Trigonometric Identity III

$\cot^2\theta\equiv\csc^2\theta-1$

This is a helpful equation used to relate the functions cotangent (otherwise known as cot) and cosecant (otherwise known as cosec). $\cot^2 \theta$ is the same thing as $(\cot \theta)^2$, it is merely an easier way of writing it, the same is true for $\csc^2 \theta$. The \equiv symbol means "identical to" (i.e. cot squared theta is identical to cosec squared theta minus one). This symbols means the relationship is always true, regardless of the value of θ . θ is a placeholder for an angle, and for this identity to work the angle must be the same for both cot and cosec.

<u>Proof</u>

Starting with Trigonometric Identity I,

 $\sin^2\theta + \cos^2\theta \equiv 1$

 $\frac{\sin^2\theta}{\sin^2\theta} + \frac{\cos^2\theta}{\sin^2\theta} \equiv \frac{1}{\sin^2\theta}$

 $\frac{\sin^2\theta}{\sin^2\theta} + \frac{1}{\tan^2\theta} \equiv \frac{1}{\sin^2\theta}$

 $\cot^2 \theta \equiv \csc^2 \theta - 1$

Dividing both sides by $\sin^2 \theta$

Using Trigonometric Identity II, $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$

Simplifying $\frac{\sin^2 \theta}{\sin^2 \theta}$

Using our knowledge that $\cot \theta = \frac{1}{\tan \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$ $1 + \frac{1}{\tan^2 \theta} \equiv \frac{1}{\sin^2 \theta}$ $1 + \cot^2 \theta \equiv \csc^2 \theta$

By re-arranging we find that

See also

- Cosecant, Secant and Cotangent

- Trigonometric Identity I

- Trigonometric Identity II

References

Attwood, G. et al. (2017). Edexcel A level Mathematics - Pure - Year 2. London: Pearson Education. pp.153-154.